您所在的位置:生命医学

遗传密码

包含在脱氧核糖核酸或核糖核酸核苷酸序列中的遗传信息。它决定蛋白质中的氨基酸排列顺序,因而决定蛋白质的化学构成和生物学功能。
遗传密码表
遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序 ,由3个连续的核苷酸组成的密码子所构成 。由于DNA双链中一般只有一条单链被转录为信使mRNA,而另一条单链则不被转录,所以即使对于以双链 DNA作为遗传物质的生物来讲,密码也用RNA中的核苷酸顺序而不用DNA中的脱氧核苷酸顺序表示。
在转移tRNA分子中有一组与mRNA中的密码子配对的三联体,称为反密码子。每种tRNA携带一种特定的氨基酸,在遗传密码的解读中起着关键性的作用。1961年英国分子生物学家克里克等在大肠杆菌噬菌体T4中用遗传学方法证明密码子由三个连续的核苷酸所组成 。美国生物化学家尼伦伯格等从1961年开始用生物化学方法进行解码研究。1964年尼伦伯格等人进行人工合成的三核苷酸和氨基酰-tRNA、核糖体三者的结合试验,证明三核苷酸已经具备信使的作用。通过种种实验,遗传密码已于1966年全部阐明。
1954年2月,美国物理学家Gamow根据Watson和Crick发表的DNA双股螺旋结构,提出了DNA的腺嘌呤N5C5H5、鸟嘌呤N5C5H5O、胞嘧啶N3C4H5O和胸腺嘧啶N2C5H6O2等四种碱基可能就是密码子的最初设想。1955-1956年,Gamow陆续发表文章从排列组合计算,1种碱基对应1种氨基酸不够,2种碱基的16种组合对应20种氨基酸也不够,4种碱基的256种组合对应20种氨基酸太多,只有三种碱基组成64种组合对应20种氨基酸较合适。1959年,Crick本人提出“中心法则”支持Gamow的假说;1961年,Crick和Brenner用实验证明了细菌和噬菌体遗传密码的三联性质。1961年夏天,Nirenberg领导的生化小组合成了碱基尿嘧啶,然后用3个尿嘧啶合成了苯丙氨酸分子,从而确定了Crick所排遗传密码表的第一个密码子的意义:三个尿嘧啶是一个苯丙氨酸的密码子,并由此拉开了实验室里反应发生结果论证Gamow所提四种碱基分子排列对应蛋白质的二十种氨基酸分子的排列数计算的序幕。1964年,威斯康星大学的Khorana合成出了一个UG交替的共聚物…UGUGUGUGUG…,并用之作为合成蛋白质的信使,产生了半胱氨酸和缬氨酸交替的多肽链…半胱氨酸-缬氨酸-半胱氨酸-缬氨酸…,由此得出“UGU是半胱氨酸的密码子和GUG是缬氨酸的密码子”结论并首创了实验室里“DNA链上碱基顺序不同致使反应发生的结果不同”分辨Gamow和Crick数学排列表中“某一类元素相同但顺序不同致使排列不同”的方法。1965-66,剑桥MRC分子生物学实验室的Clark等做出起始密码子结论;同一实验室的Brenner等和美国耶鲁大学的A.Garen等各自做出终止密码子结论。到1966年,关于Gamow所提出的64个排列对应20种氨基酸分子的遗传密码意义全部被实验室里的反应所破译。

  设为首页 | 关于我们  |   版权信息  |  隐私保护  |  免责声明  |  合作伙伴  |  联系我们
 中华自然科学网(SCICN.NET), All Rights Reserved
  冀ICP备17034147号   客服及报障邮箱:sci@scicn.net